第50卷第7期/2023年4月/中国激光

基于宽带高反镜色散补偿的高功率克尔透镜锁模 飞秒激光器

田轩¹,田文龙^{1*},李乾¹,王阁阳¹,白川¹,郑立¹,于洋²,魏志义³,徐晓东⁴,朱江峰¹ ¹西安电子科技大学光电工程学院,陕西西安710071; ²西安电子科技大学前沿交叉研究院,陕西西安710071; ³中国科学院物理研究所北京凝聚态物理国家实验室,北京100190; ⁴江苏师范大学物理与电子工程学院,江苏徐州221116

摘要 半导体激光器泵浦的高功率飞秒激光器在工业加工和生物医学等领域中均发挥着重要的作用。一般而言, 无论是被动锁模飞秒激光器还是克尔透镜锁模飞秒激光器,都需要在腔内引入一定的负色散平衡自相位调制,产生 稳定的飞秒孤子。特别是随着平均功率的增加,腔内自相位调制增强,需要更多的负色散量进行平衡。常用的色散 补偿器件有棱镜对、啁啾镜以及GTI(Gires-Tournois interferometer)镜等,棱镜对导致振荡器结构复杂,而啁啾镜和 GTI镜的价格较为昂贵。实现了基于宽带高反镜色散补偿的高功率克尔透镜锁模运转,在泵浦功率为18 W时,利 用Yb:CYA晶体获得了平均输出功率为3.6 W、脉冲宽度为92 fs、100 min功率稳定性均方根值(RMS)为0.46%的 稳定锁模脉冲,有利于进一步降低高功率飞秒激光器的成本。

关键词 激光器;超快激光;掺镱全固态激光器;克尔透镜锁模;高平均功率;飞秒激光
 中图分类号 TN248.1
 文献标志码 A
 DOI: 10

DOI: 10.3788/CJL221471

1引言

飞秒激光由于具备光谱带宽宽、脉冲宽度窄、峰值 功率高等特点,在国防、工业、生物医学和科研等领域 中发挥着重要的作用^[1]。飞秒激光主要由锁模激光器 直接产生,锁模激光器主要由工作物质、抽运系统、锁 模器件以及色散补偿器件几部分组成。工作物质作为 激光器的核心器件,吸收抽运系统提供的能量并将激 光放大。常用的飞秒激光工作物质有钛宝石晶体以及 其他稀土离子、过渡金属离子掺杂的固体增益介质等。 激光二极管(LD)抽运的镱离子(Yb³⁺)掺杂的全固态 飞秒激光器是目前超快激光技术的研究热点之一。掺 镱增益介质在以下几个方面展现出了明显的优势: 1) Yb³⁺ 掺杂激光介质属于准三能级结构,只有基 态²F_{7/2}和激发态²F_{5/2},其简单的电子能级结构排除了 激发态吸收和各种有害的淬灭过程[2],可以避免额外 增加损耗、降低转换效率的不利过程,从而实现高效率 高功率激光输出;2)Yb³⁺掺杂激光介质的吸收峰与发 展最为成熟、早已实现商品化的砷化铟镓(InGaAs) LD发射波长一致,因此可以直接使用LD泵浦,既能 够满足高功率的输出,又可以极大降低成本;3)掺Yb 晶体的发射波长在1030 nm附近,与泵浦波长非常接 近,因此有着更低的量子损耗,在高功率光泵浦下热 负荷得到有效减缓。因此,在提高输出功率以及降 低激光器成本方面,Yb飞秒激光器具有很大的 优势。

高功率Yb飞秒激光器主要基于半导体可饱和吸 收镜(SESAM)锁模技术^[3]和克尔透镜锁模(KLM)技 术^[4]。为了便于实现锁模运转,SESAM锁模技术成为 了首选,但是可饱和吸收体的性质严重限制了输出的 激光参数,例如高功率、短脉宽的锁模输出就对可饱和 吸收体的损伤阈值以及恢复时间提出了严格的要 求^[5]。而基于介质三阶非线性克尔效应的KLM技术 不受被动锁模器件的限制,克尔效应响应时间只有几 个飞秒量级,且由克尔效应引起的自相位调制(SPM) 增大了光脉冲的光谱带宽,更宽的光谱支持更短脉冲 输出^[6]。利用SESAM被动锁模技术,2019年,西安电 子科技大学的Cao等^[7]基于Yb原子数分数为3%的 Yb:KGW晶体和2.4%调制深度的SESAM,在最高 23.8 W的LD泵浦功率下,得到了平均功率为7.6 W、

收稿日期: 2022-11-30; 修回日期: 2022-12-28; 录用日期: 2023-01-16; 网络首发日期: 2023-02-07

基金项目:陕西省自然科学基金(2023-JC-YB-485)、国家自然科学基金(61975071, 62105253)、西安市科技创新计划 (202005YK01)

通信作者: *wltian@xidian.edu.cn

研究论文

脉冲宽度为160 fs的锁模结果。利用 KLM 技术,本 课题组于2019年基于Yb:CYA 双共焦腔振荡器,实 现了平均功率为6.2 W、脉冲宽度为59 fs的稳定锁模 运转^[8]。2021年,通过进一步优化,在34 W 泵浦功 率下,利用透射率为20%的输出耦合(OC)镜获得了 平均功率为10.4 W、脉冲宽度为98 fs的稳定锁模运 转^[9]。可以看出,目前利用 SESAM 锁模技术和 KLM 技术得到的掺镱全固态飞秒激光器在平均功率 和脉冲宽度等综合性能方面差别不大,但从制作工 艺和降低飞秒激光器成本的角度考虑,KLM 更具 优势。

另外,SESAM锁模和克尔透镜锁模产生的飞秒 脉冲都属于孤子锁模,孤子锁模通常是谐振腔内反常 色散和SPM之间平衡的结果,SPM的引入使得腔内 脉冲的光谱和时间展宽,因此需要适当的色散补偿 来稳定锁模操作,而且随着功率的增加,系统对负色 散的要求也更多。全固态锁模激光器中常用的色散 补偿器件有棱镜对、啁啾镜、GTI(Gires-Tournois interferometer)镜等。棱镜对导致振荡器结构复杂,啁 啾镜和GTI镜价格比较昂贵。因此,从降低飞秒激光 器的成本角度出发,无需色散补偿器件的高功率克尔 透镜锁模具有重要的研究意义。

基于以上背景,本文研究了无色散补偿器件的克尔透镜锁模技术,针对宽带高反镜在大于中心波长的波段处往往是负色散的特点,采用宽带高反镜替代GTI镜,实现了基于Yb:CYA晶体的高功率克尔透镜锁模运转。在18W泵浦功率下,获得平均功率为3.6W、脉宽为92fs的锁模脉冲,其在100min内的功率稳定性均方根值(RMS)仅为0.46%。

2 实验设计

实验装置如图1所示,采用双共焦腔型结构,泵浦 源为一台波长锁定在 976 nm 的高功率光纤耦合输出 LD,最大泵浦功率为50W,芯径为105 um,光纤数值 孔径(NA)为0.15。通过放大比例为1:0.8的耦合系统 后泵浦光聚焦到晶体中心,使用电荷耦合元件(CCD) 测量得到聚焦光斑直径约为104 µm,光束的质量因子 (M²)约为25。在模拟软件中对设计的谐振腔内的激 光光斑大小进行了模拟,计算得到增益介质中激光的 束腰半径大小为70 μm,激光模式光斑直径略大于泵 浦光聚焦光斑有利于形成软孔光阑。增益介质为一块 Yb原子数分数为5%、截面面积为3mm×3mm、通光 长度6mm的Yb:CYA晶体。增益晶体被夹持在热沉 上,采用水冷散热的方式带走积聚的热量。使用的克 尔介质(KM)为一片厚度为2mm的半英寸CaF₂,其非 线性折射率(n_2)大小为1.24×10⁻¹⁶ cm²/W^[10-11]。与非 线性折射率更高的 SiO₂(2.5×10⁻¹⁶ cm²/W)^[12]或者钛 宝石(3.1×10⁻¹⁶ cm²/W)^[13]相比,利用CaF₂作为克尔 介质,可以避免由过高非线性相移造成的脉冲分裂现 象^[14],而且其能带带隙较宽,也避免了多光子吸收效 应^[15]。克尔介质与入射光成布儒斯特角摆放,在减小 腔内损耗的同时,也补偿了凹面镜C3与C4角度折叠 引起的像散。C1与C2为曲率半径为300mm的凹面 镜,C3与C4为曲率半径为100mm的凹面镜。DM为 一片平面双色镜。HR1~HR4为750~1100 nm 宽带 高反镜,用于折叠光路,同时起到引入负色散的作用。 OC为透过率为15%的输出耦合镜,谐振腔单路腔长 为1.85m,对应是重复频率约为81.1MHz。

图 1 激光振荡器实验光路图 Fig. 1 Experimental optical path diagram of laser oscillator

一般认为,宽带高反镜在镀覆四分之一膜系的 膜后具有色散特性,在大于中心波长的波段呈负色 散,在小于中心波长的波段呈正色散。使用的750~ 1100 nm 宽带高反镜的中心波长为950 nm,其在 1 μm波段引入的色散是负的,因此可以替代GTI镜 进行腔内色散管理。首先为了验证宽带高反镜在 1030 nm 波长附近引入了负色散,我们利用 OC 将商 用 Yb:KGW 全固态飞秒激光器产生的飞秒脉冲注 入到振荡器腔内,脉冲在腔内传播一次后由 HR4 输 出,通过强度自相关仪测量 HR4 反射后的脉冲宽 度,推算出腔内提供的总色散量,测试方法如图 2 所示。

Fig. 2 Schematic of method for measuring net dispersion in resonator cavity

3 实验结果

商用Yb:KGW全固态飞秒激光器输出光谱的中 心波长为1030 nm,光谱半峰全宽为15 nm,相应的傅 里叶变换极限脉冲宽度为104 fs。使用自相关仪在OC 处对测试激光的脉冲宽度进行测量,测量结果为132 fs, 说明脉冲本身带有+3050 fs²的啁啾量。从OC注入的 测试激光经过腔内的每一个器件,最终由端镜HR4输 出,输出的脉冲宽度为127 fs,此时脉冲带有的啁啾量 变成了+2740 fs²,即腔内的单程净群延迟色散量为 -1650 fs²。考虑到腔内的材料色散为+680 fs²,可得 出每片高反镜提供了-552.5 fs²的色散量。

上述测试证明,利用几个宽带高反镜替代GTI 镜,仍然可以保持腔内是净负色散。在泵浦光作用下 晶体自发辐射产生荧光,调节两个端镜,使得两路荧光 能原路返回,获得连续光输出。为了实现更好的模式 匹配,通过调节凹面镜C4到克尔介质的距离,改变增 益晶体中的激光模式光斑大小;调节凹面镜C4、端镜、 OC的位置,使得光光转换效率最大,测量的连续光 (CW)输出功率如图3所示。当泵浦功率增加至31W

时,最大连续光输出功率为9.02 W,此时继续增加泵 浦功率,发现连续光已达到饱和状态,在31 W 泵浦功 率下,连续光的斜效率最高达到39%。为防止晶体表 面膜层受到损坏,将最大的泵浦功率控制在30 W内。

当泵浦光功率为18W时,为了启动锁模,推动端 镜处的平移台,此时锁模状态下的输出功率为3.6W。 如图4(a)所示,利用光谱分析仪对锁模激光光谱进 行了测量。锁模光谱的半峰全宽为15.2nm,中心波

图4 锁模光谱和自相关曲线。(a)锁模光谱;(b)自相关曲线

研究论文

长在1055 nm 处,对应的傅里叶变换极限脉冲宽度为 76.9 fs。接着利用同一强度自动相关仪对脉冲宽度进 行了测量,自相关曲线如图4(b)所示,利用双曲正割 拟合,计算出脉冲宽度为92 fs,对应的时间带宽积为 0.377。在50 ps的延迟跨度内测量到的自相关曲线 如图4(b)右上角插图所示,在整个尺度范围内没有 多余的脉冲,表明没有出现多脉冲现象。使用带宽 为500 MHz的示波器对锁模脉冲序列进行测量,可 以看到在4 ns和100 ns的时间尺度范围内脉冲序列 的振幅一致,且脉冲分布均匀,说明振荡器锁模状态 稳定,没有调Q与多脉冲现象,如图5所示。

为了进一步确定高功率下振荡器的锁模稳定性, 使用射频频谱分析仪测量了锁模脉冲的射频功率谱。 在 1 kHz 分辨带宽(RBW)下,锁模脉冲的重复频率为 81.5 MHz,脉冲信噪比为 54 dB,如图 6(a)所示。在 500 MHz 频率范围内和 3 kHz 分辨率下,可以观测到 基频和高次谐波谱信号没有明显的边带,这表明锁模 状态较为稳定,如图 6(b)所示。接着测量了锁模输出 功率的稳定性,如图 6(c)所示,2 h内平均功率抖动的 均方根为 0.46%。最后,为了确定激光束的光束质量, 使用光束质量分析仪对激光的光束质量进行测试,x与y方向上的光束质量因子 M_x^2 和 M_y^2 分别为 1.24 和 1.22,如图 6(d)所示。

图 5 不同时间尺度范围内示波器测量的脉冲序列。(a) 4 ns; (b) 100 ns

Fig. 5 Pulse sequences measured by oscilloscope in different time scales. (a) 4 ns; (b) 100 ns

图 6 锁模脉冲频谱、功率稳定性与光束质量表现。(a)在1kHz分辨带宽下锁模激光的射频频谱;(b)3kHz分辨率下的高次谐波谱 信号;(c)功率稳定性;(d)锁模激光的光束质量与光斑

Fig. 6 Spectra, power stability, and beam quality performance of mode-locked pulse. (a) Radio frequency spectrum of mode-locked laser at RBW of 1 kHz; (b) high order harmonic spectrum signal at 3 kHz RBW; (c) power stability; (d) beam quality and spot of mode-locked laser

4 结 论

利用宽带高反镜的色散特性,研究了无色散补偿 器件时的克尔透镜锁模技术。使用 Yb: CYA 晶体作 为增益介质,在18 W 的泵浦功率下,实现了输出功率 为3.6 W、光谱半峰全宽为15.2 nm、脉冲宽度为92 fs 的稳定锁模运转。锁模时的平均功率抖动在100 min 内的 RMS 为0.46%,锁模光斑的 M²_x和 M²_y分别为1.24 和1.22。结果表明,将色散补偿器件替换为宽带高反 镜,仍然能够达到色散补偿效果,同时激光器成本大大 降低。

参考文献

- Tian W L, Peng Y N, Zhang Z Y, et al. Diode-pumped power scalable Kerr-lens mode-locked Yb: CYA laser[J]. Photonics Research, 2018, 6(2): 127-131.
- [2] Moulton P F, Cederberg J G, Stevens K T, et al. Characterization of absorption bands in Ti: sapphire crystals[J]. Optical Material Express, 2019, 9(5): 2216-2250.
- [3] 田文龙,徐瑞,朱江峰,等.高功率克尔透镜锁模掺镱全固态激 光器研究进展(特邀)[J].光子学报,2021,50(8):0850207.
 Tian W L, Xu R, Zhu J F, et al. Review of high-power Kerr-lens mode-locked Yb-doped all-solid-state lasers (invited) [J]. Acta Photonica Sinica, 2021, 50(8): 0850207.
- [4] Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-453.

- [5] 朱江峰,田文龙,高子叶,等.二极管抽运全固态飞秒Yb激光振荡器[J].中国激光,2017,44(9):0900001.
 Zhu J F, Tian W L, Gao Z Y, et al. Diode-pumped all-solid-state femtosecond Yb laser oscillators[J]. Chinese Journal of Lasers, 2017,44(9):0900001.
- [6] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 1991, 16 (1): 42-44.
- [7] Cao Y F, Meng X H, Wang J L, et al. 7.6-W diode-pumped femtosecond Yb: KGW laser[J]. Chinese Physics B, 2019, 28(4): 044205.
- [8] Tian W L, Yu C, Zhu J F, et al. Diode-pumped high-power sub-100 fs Kerr-lens mode-locked Yb: CaYAlO₄ laser with 1.85 MW peak power[J]. Optics Express, 2019, 27(15): 21448-21454.
- [9] Tian W L, Xu R, Zheng L, et al. 10-W-scale Kerr-lens modelocked Yb: CALYO laser with sub-100-fs pulses[J]. Optics Letters, 2021, 46(6): 1297-1300.
- [10] Wu Y Q, Su L B, Wang Q G, et al. Spectroscopic properties of Yb-doped CaF₂-YF₃ solid-solution laser crystal[J]. Laser Physics, 2013, 23(10): 105805.
- [11] Zhu H T, Liu J, Jiang S Z, et al. Diode-pumped Yb, Y: CaF₂ laser mode-locked by monolayer graphene[J]. Optics & Laser Technology, 2015, 75: 83-86.
- [12] Milam D. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica[J]. Applied Optics, 1998, 37(3): 546-550.
- [13] Rapoport W R, Khattak C P. Titanium sapphire laser characteristics[J]. Applied Optics, 1988, 27(13): 2677-2684.
- [14] Li D Z, Xu X D, Zhu H M, et al. Characterization of laser crystal Yb: CaYAlO₄[J]. Journal of the Optical Society of America B, 2011, 28(7): 1650-1654.
- [15] Brons J. High-power femtosecond laser-oscillators for applications in high-field physics[D]. Muenchen: Ludwig-Maximilians-Universitaet Muenchen, 2017.

High Power Kerr-Lens Mode-Locked Femtosecond Laser with Broadband Highly Reflective Mirrors Compensating Dispersion

Tian Xuan¹, Tian Wenlong^{1*}, Li Qian¹, Wang Geyang¹, Bai Chuan¹, Zheng Li¹, Yu Yang², Wei Zhiyi³, Xu Xiaodong⁴, Zhu Jiangfeng¹

¹School of Optoelectronic Engineering, Xidian University, Xi'an 710071, Shaanxi, China;

²Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, Shaanxi, China;

³Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science,

Beijing 100190, China;

⁴School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China

Abstract

Objective High-power femtosecond lasers pumped by laser diodes (LDs) play a significant role in industrial processing and scientific research. Femtosecond lasers are generated directly using mode-locked lasers. The components of a mode-locked laser include a gain medium, pump source, mode-locked device, and dispersion compensation device. The gain medium is the core of the laser; it provides population inversion and generates excited radiation. With the emergence of high-brightness and high-power semiconductor lasers, ytterbium ion (Yb³⁺)-doped solid-state laser materials have rapidly developed and become one of the most important gain media in the field of high-power and femtosecond lasers. High-power Yb-femtosecond lasers are mainly based on semiconductor saturable absorber mirror (SESAM) mode-locking technology and Kerr lens mode-locking (KLM) technology. Generally, both passively mode-locked and Kerr lens mode-locked femtosecond lasers need to introduce a certain amount of negative group delay dispersion (GDD) to balance the self-phase modulation in the cavity and produce stable femtosecond solitons. Particularly, as the average power increases, the intracavity self-phase modulation becomes stronger and more negative GDD is needed. It is well known that dispersion compensating devices include prism pairs, chirped mirrors, and GTI mirrors are more expensive. Therefore, high-power Kerr lens mode-

研究论文

locked lasers without dispersion compensation devices are of great research significance for reducing the cost of femtosecond lasers. Based on the above background, this study evaluates the Kerr lens mode-locking technique using non-GDD-optimized broadband highly reflective mirrors for dispersion compensation. Because broadband highly reflective mirrors tend to be negatively dispersive in the band at wavelengths longer than their center wavelengths, we propose the use of broadband highly reflective mirrors instead of GTI mirrors to realize high-power Kerr lens-locked operation based on Yb : CYA crystals.

Methods The experimental setup is a dual-confocal cavity, and the pump source is a 50-W fiber coupled output LD at a wavelength of 976 nm with a beam quality factor (M^2) of approximately 25. The pump is imaged into the crystal with a 104 μ m-diameter spot by an imaging system. The laser spot size in the designed resonant cavity is simulated in the simulation software, and the beam waist radius size of the laser in the gain medium is calculated to be 70 µm. The spot diameter of laser mode is slightly larger than that of the pump light mode, which is conducive for the formation of a soft-aperture diaphragm. The cross-section area of 6-mm long Yb : CYA crystal used in the oscillator is $3 \text{ mm} \times 3 \text{ mm}$. The absorption slope of the pump is 93%. For the thermal load dissipation, the crystal is wrapped in indium foil and mounted tightly on a water-cooled copper heat sink maintained at a constant temperature. The nonlinear Kerr medium is a thin slice of CaF₂ with a thickness of 2 mm. The Kerr medium and the incident light are placed at the Brewster angle to compensate for the astigmatism introduced by the folding angle of the concave mirrors and maintain the linear polarization of the laser inside the cavity. Moreover, we use four broadband highly reflective mirrors covering 750-1100 nm in the cavity for dispersion management, because these highly reflective mirrors have negative dispersion in the bands at wavelengths larger than the central wavelength of 950 nm and positive dispersion in the bands at wavelengths smaller than the central wavelength. We measure the amount of negative dispersion introduced by the broadband high-reflective mirrors near the wavelength of 1030 nm, and each of them can provide GDD of approximately -550 fs^2 for a single bounce; thus, the net dispersion in the cavity is -1520 fs^2 using four highreflective mirrors. The resonant cavity has a single cavity length of 1.85 m, corresponding to a repetition rate of approximately 81.1 MHz.

Results and Discussions A stable mode-locked operation with an output power of 3.6 W, spectral full width at half-maximum of 15.2 nm, and pulse width of 92 fs is achieved at 18 W pumping using an output coupler with transmittance of 15%. The root mean square (RMS) of the average power fluctuation during the mode-locking operation is 0.46% over 100 min, and the beam quality factors of the mode-locked laser in x and y directions are 1.24 and 1.22, respectively.

Conclusions Using broadband highly reflective mirrors instead of expensive GTI mirrors, a stable mode-locking operation with a high average power and short pulse duration is achieved, significantly decreasing the laser cost. Moreover, it is believed that such low-cost all-solid-state femtosecond lasers, which can directly produce high power, narrow pulse widths, good stability, and high beam quality, will become popular in frontier scientific research and industrial processing.

Key words lasers; ultrafast laser; ytterbium-doped all-solid-state laser; Kerr-lens mode-locking; high average power; femtosecond laser